\(\int \frac {d+e x}{(a+b x^2+c x^4)^2} \, dx\) [36]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 330 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (b^2-12 a c-b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 c e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

[Out]

-1/2*e*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*d*x*(b*c*x^2-2*a*c+b^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+2*c
*e*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)+1/4*d*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(
1/2))^(1/2))*c^(1/2)*(b^2-12*a*c+b*(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)^(3/2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/
2)-1/4*d*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b^2-12*a*c-b*(-4*a*c+b^2)^(1/2))/a/(-
4*a*c+b^2)^(3/2)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 330, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {1687, 12, 1106, 1180, 211, 1121, 628, 632, 212} \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {c} d \left (b \sqrt {b^2-4 a c}-12 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} d \left (-b \sqrt {b^2-4 a c}-12 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {2 c e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {d x \left (-2 a c+b^2+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \]

[In]

Int[(d + e*x)/(a + b*x^2 + c*x^4)^2,x]

[Out]

-1/2*(e*(b + 2*c*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (d*x*(b^2 - 2*a*c + b*c*x^2))/(2*a*(b^2 - 4*a*c)*
(a + b*x^2 + c*x^4)) + (Sqrt[c]*(b^2 - 12*a*c + b*Sqrt[b^2 - 4*a*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqr
t[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(b^2 - 12*a*c - b*S
qrt[b^2 - 4*a*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)^(3/2)*
Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (2*c*e*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1
)*(b^2 - 4*a*c))), x] - Dist[2*c*((2*p + 3)/((p + 1)*(b^2 - 4*a*c))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1106

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 - 2*a*c + b*c*x^2)*((a + b*x^2 + c*
x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(b^2 - 2*a*c + 2*(p +
1)*(b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 -
4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {d}{\left (a+b x^2+c x^4\right )^2} \, dx+\int \frac {e x}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = d \int \frac {1}{\left (a+b x^2+c x^4\right )^2} \, dx+e \int \frac {x}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {d x \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {d \int \frac {b^2-2 a c-2 \left (b^2-4 a c\right )-b c x^2}{a+b x^2+c x^4} \, dx}{2 a \left (b^2-4 a c\right )}+\frac {1}{2} e \text {Subst}\left (\int \frac {1}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right ) \\ & = -\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (c \left (b^2-12 a c-b \sqrt {b^2-4 a c}\right ) d\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )^{3/2}}+\frac {\left (c \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) d\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )^{3/2}}-\frac {(c e) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{b^2-4 a c} \\ & = -\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (b^2-12 a c-b \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(2 c e) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{b^2-4 a c} \\ & = -\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (b^2-12 a c-b \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 c e \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.03 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (\frac {2 a b e+4 a c x (d+e x)-2 b d x \left (b+c x^2\right )}{a \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (b^2-12 a c+b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (-b^2+12 a c+b \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {4 c e \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {4 c e \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \]

[In]

Integrate[(d + e*x)/(a + b*x^2 + c*x^4)^2,x]

[Out]

((2*a*b*e + 4*a*c*x*(d + e*x) - 2*b*d*x*(b + c*x^2))/(a*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[2]*Sqrt[c]
*(b^2 - 12*a*c + b*Sqrt[b^2 - 4*a*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a
*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*Sqrt[c]*(-b^2 + 12*a*c + b*Sqrt[b^2 - 4*a*c])*d*ArcTan[(Sqrt
[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (4*c*e*Log[
-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) + (4*c*e*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(b^2 - 4
*a*c)^(3/2))/4

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.25 (sec) , antiderivative size = 209, normalized size of antiderivative = 0.63

method result size
risch \(\frac {-\frac {b c d \,x^{3}}{2 a \left (4 a c -b^{2}\right )}+\frac {c \,x^{2} e}{4 a c -b^{2}}+\frac {\left (2 a c -b^{2}\right ) d x}{2 a \left (4 a c -b^{2}\right )}+\frac {b e}{8 a c -2 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {c \,\textit {\_R}^{2} b d}{a \left (4 a c -b^{2}\right )}+\frac {4 c e \textit {\_R}}{4 a c -b^{2}}+\frac {d \left (6 a c -b^{2}\right )}{a \left (4 a c -b^{2}\right )}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{4}\) \(209\)
default \(16 c^{2} \left (-\frac {\frac {\frac {\left (4 a c \sqrt {-4 a c +b^{2}}-b^{2} \sqrt {-4 a c +b^{2}}+4 a b c -b^{3}\right ) d x}{16 a \,c^{2}}-\frac {e \left (4 a c -b^{2}\right )}{8 c^{2}}}{x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}}+\frac {2 a e \sqrt {-4 a c +b^{2}}\, \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )+\frac {\left (-12 a c d \sqrt {-4 a c +b^{2}}+b^{2} d \sqrt {-4 a c +b^{2}}-4 a b c d +b^{3} d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a c}}{4 \left (4 a c -b^{2}\right )^{2}}+\frac {\frac {-\frac {\left (-4 a c \sqrt {-4 a c +b^{2}}+b^{2} \sqrt {-4 a c +b^{2}}+4 a b c -b^{3}\right ) d x}{16 a \,c^{2}}+\frac {e \left (4 a c -b^{2}\right )}{8 c^{2}}}{x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}+\frac {2 a e \sqrt {-4 a c +b^{2}}\, \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )+\frac {\left (12 a c d \sqrt {-4 a c +b^{2}}-b^{2} d \sqrt {-4 a c +b^{2}}-4 a b c d +b^{3} d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a c}}{4 \left (4 a c -b^{2}\right )^{2}}\right )\) \(489\)

[In]

int((e*x+d)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

(-1/2/a*b*c*d/(4*a*c-b^2)*x^3+c/(4*a*c-b^2)*x^2*e+1/2*(2*a*c-b^2)*d/a/(4*a*c-b^2)*x+1/2/(4*a*c-b^2)*b*e)/(c*x^
4+b*x^2+a)+1/4*sum((-c/a/(4*a*c-b^2)*_R^2*b*d+4*c/(4*a*c-b^2)*e*_R+d*(6*a*c-b^2)/a/(4*a*c-b^2))/(2*_R^3*c+_R*b
)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 235.03 (sec) , antiderivative size = 1678440, normalized size of antiderivative = 5086.18 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Too large to include

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate((e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

1/2*(b*c*d*x^3 - 2*a*c*e*x^2 - a*b*e + (b^2 - 2*a*c)*d*x)/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*
b^3 - 4*a^2*b*c)*x^2) + 1/2*integrate((b*c*d*x^2 - 4*a*c*e*x + (b^2 - 6*a*c)*d)/(c*x^4 + b*x^2 + a), x)/(a*b^2
 - 4*a^2*c)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3426 vs. \(2 (278) = 556\).

Time = 1.34 (sec) , antiderivative size = 3426, normalized size of antiderivative = 10.38 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

1/2*(b*c*d*x^3 - 2*a*c*e*x^2 + b^2*d*x - 2*a*c*d*x - a*b*e)/((c*x^4 + b*x^2 + a)*(a*b^2 - 4*a^2*c)) - 1/16*((2
*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*
a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c
 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*(a*b^2 - 4*a^2*c)^
2*d - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c
- 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c - 2*a*b^6*c + 64*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a
^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*
a*b^4*c^2 + 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c + sqrt(b
^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 128*a^3*b^2*c^3 + 24*sqrt(
2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 192*a^4*c^4 + 2*(b^2 - 4*a*c)*a*b^4*c - 20*(b^2 - 4*a*c)*a^2*b^2*
c^2 + 48*(b^2 - 4*a*c)*a^3*c^3)*d*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224*a^4*b^3*c^4 - 3
84*a^5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*sqrt(b^2 - 4*a*c
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*
b^6*c - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt(2)*sqrt(b^2 - 4*a*
c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2
*b^5*c^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2)*sqrt(b^2 - 4*a
*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)
*a^3*b^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2 - 4*a*c)*a^2*b^
5*c^2 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4*b*c^4)*d)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2
*b*c + sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^
3*b^6 - 12*a^4*b^4*c - 2*a^3*b^5*c + 48*a^5*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3
 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*abs(a*b^2 - 4*a^2*c)*abs(c)) - 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2
- 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b
*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c -
sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*(a*b^2 - 4*a^2*c)^2*d - 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4
*a*c)*c)*a*b^6 - 14*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)
*c)*a*b^5*c + 2*a*b^6*c + 64*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c - sqrt(
b^2 - 4*a*c)*c)*a^2*b^3*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 28*a^2*b^4*c^2 - 96*sqrt(2)*
sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sq
rt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 + 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c
^4 - 192*a^4*c^4 - 2*(b^2 - 4*a*c)*a*b^4*c + 20*(b^2 - 4*a*c)*a^2*b^2*c^2 - 48*(b^2 - 4*a*c)*a^3*c^3)*d*abs(a*
b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224*a^4*b^3*c^4 - 384*a^5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^
5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^6*c - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b
^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^5*c^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*
b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a
*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2 - 4*a*c)*a^2*b^5*c^2 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 9
6*(b^2 - 4*a*c)*a^4*b*c^4)*d)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2*b*c - sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a
^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^3*b^6 - 12*a^4*b^4*c - 2*a^3*b^5*c + 48*
a^5*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*abs(a*b^2
 - 4*a^2*c)*abs(c)) - 1/4*((b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 + (b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sqrt
(b^2 - 4*a*c))*e*abs(a*b^2 - 4*a^2*c) - (a*b^5*c^2 - 8*a^2*b^3*c^3 - 2*a*b^4*c^3 + 16*a^3*b*c^4 + 8*a^2*b^2*c^
4 + a*b^3*c^4 - 4*a^2*b*c^5 + (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^3*c^3 + a*b^2*c^4)*sqrt(b^2 - 4*a*c))*e)*log(
x^2 + 1/2*(a*b^3 - 4*a^2*b*c + sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b
^2*c - 4*a^2*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*a
bs(a*b^2 - 4*a^2*c)) - 1/4*((b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 + (b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sqr
t(b^2 - 4*a*c))*e*abs(a*b^2 - 4*a^2*c) - (a*b^5*c^2 - 8*a^2*b^3*c^3 - 2*a*b^4*c^3 + 16*a^3*b*c^4 + 8*a^2*b^2*c
^4 + a*b^3*c^4 - 4*a^2*b*c^5 + (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^3*c^3 + a*b^2*c^4)*sqrt(b^2 - 4*a*c))*e)*log
(x^2 + 1/2*(a*b^3 - 4*a^2*b*c - sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*
b^2*c - 4*a^2*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*
abs(a*b^2 - 4*a^2*c))

Mupad [B] (verification not implemented)

Time = 8.37 (sec) , antiderivative size = 2382, normalized size of antiderivative = 7.22 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

int((d + e*x)/(a + b*x^2 + c*x^4)^2,x)

[Out]

((b*e)/(2*(4*a*c - b^2)) + (c*e*x^2)/(4*a*c - b^2) + (d*x*(2*a*c - b^2))/(2*a*(4*a*c - b^2)) - (b*c*d*x^3)/(2*
a*(4*a*c - b^2)))/(a + b*x^2 + c*x^4) + symsum(log((5*b^3*c^4*d^3 - 96*a^2*c^5*d*e^2 - 36*a*b*c^5*d^3 + 16*a*b
^2*c^4*d*e^2)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - root(1572864*a^8*b^2*c^5*z^4 - 9830
40*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^
4 - 256*a^3*b^12*z^4 + 61440*a^5*b*c^5*d^2*z^2 + 432*a*b^9*c*d^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^
4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7
*c^2*d^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*b^11*d^2*z^2 - 672*a*b^6*c^2*d^2*e*z - 15872*a^3*b^2*c^4*d^2*e*z + 4
992*a^2*b^4*c^3*d^2*e*z + 18432*a^4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2
*e^2 - 16*b^5*c^2*d^2*e^2 + 360*a*b^2*c^4*d^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1296*a^2*c^5*d^4, z, k)*(ro
ot(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^
4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 61440*a^5*b*c^5*d^2*z^2 + 432*a*b^9*c*d^2*z^2 + 24576*
a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a
^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*b^11*d^2*z^2 - 672*a*b^6*c^2*d^2*e*
z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z + 18432*a^4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 960*a^2*
b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^2 - 16*b^5*c^2*d^2*e^2 + 360*a*b^2*c^4*d^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*
d^4 - 1296*a^2*c^5*d^4, z, k)*((x*(1024*a^5*c^6*e - 16*a^2*b^6*c^3*e + 192*a^3*b^4*c^4*e - 768*a^4*b^2*c^5*e))
/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - (6144*a^5*c^6*d - 288*a^2*b^6*c^3*d + 1920*a^3*b
^4*c^4*d - 5632*a^4*b^2*c^5*d + 16*a*b^8*c^2*d)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) + (
root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*
a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 61440*a^5*b*c^5*d^2*z^2 + 432*a*b^9*c*d^2*z^2 + 2457
6*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064
*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*b^11*d^2*z^2 - 672*a*b^6*c^2*d^2*
e*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z + 18432*a^4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 960*a^
2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^2 - 16*b^5*c^2*d^2*e^2 + 360*a*b^2*c^4*d^4 - 256*a^3*c^4*e^4 - 25*b^4*c^
3*d^4 - 1296*a^2*c^5*d^4, z, k)*x*(4096*a^6*b*c^6 + 16*a^2*b^9*c^2 - 256*a^3*b^7*c^3 + 1536*a^4*b^5*c^4 - 4096
*a^5*b^3*c^5))/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2))) + (32*a*b^5*c^3*d*e + 1024*a^3*b*c^
5*d*e - 384*a^2*b^3*c^4*d*e)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - (x*(288*a^3*c^6*d^2
- b^6*c^3*d^2 + 18*a*b^4*c^4*d^2 - 64*a^3*b*c^5*e^2 - 128*a^2*b^2*c^5*d^2 + 16*a^2*b^3*c^4*e^2))/(2*(a^2*b^6 -
 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2))) - (x*(16*a^2*c^5*e^3 - b^3*c^4*d^2*e + 12*a*b*c^5*d^2*e))/(2*(a
^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)))*root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 +
 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4
 + 61440*a^5*b*c^5*d^2*z^2 + 432*a*b^9*c*d^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*
a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32768
*a^6*c^5*e^2*z^2 - 16*b^11*d^2*z^2 - 672*a*b^6*c^2*d^2*e*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*
e*z + 18432*a^4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^2 - 16*b^5*c^2*d^
2*e^2 + 360*a*b^2*c^4*d^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1296*a^2*c^5*d^4, z, k), k, 1, 4)